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Abstract
A method for studying the structure and thermodynamic properties of interfaces
between coexisting fluid phases has been developed recently. The density
functional approach employs correlation functions calculated from reference
hypernetted-chain integral equations. We report here results for liquid–liquid
interfaces: the interface of a symmetrical binary Lennard-Jones mixture, a
mixture of particles with different sizes and a polar–nonpolar liquid interface.
Also model potentials for argon, CHF3, C6H12 and H2O are tested with respect
to surface properties.

1. Introduction

Fluid interfaces are systems that are currently of great interest. Many technical processes
such as condensation and evaporation, wetting and drying, mixing and demixing, transport
of solutes, formation of colloids and suspensions involve fluid interfaces. So there are many
reasons to improve the understanding and the methods for analysis of interfaces between fluid
phases. One path to more insight into the physics of fluid interfaces is that of elucidating the
relations between the molecular interactions and the structure and thermodynamic interface
properties. This paper is a contribution in such a direction and reports on statistical mechanics
calculations of the interface properties of several model fluids, mixtures which separate and
form fluid interfaces.

The statistical mechanics of inhomogeneous fluids is based here on density functional
theory and the direct correlation function hierarchy. From the minimization of approximate
density functionals the density profiles between fluid phases can be found (see [1–6] and for
reviews see [7, 8]). Usually the term ‘density functional theory’ is used for approximations
which introduce explicit functional density dependencies into expressions for the free energy.
But the exact Euler equations for the minimum of the free energy contain the direct correlation
functions cαβ(r1, r2). From density functional arguments one finds integral equations for
cαβ(r1, r2) which are the second level of a hierarchy of equations for higher correlation
functions. Closing the hierarchy of equations on this two-particle level leads to the integral
equations (hypernetted chain (HNC) and reference HNC (RHNC) approximations, Percus–
Yevick approximation, mean-spherical approximation etc) of the statistical mechanics of fluids.
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We have shown previously [6] that by calculating the two-particle correlations and employing
these in the free energy, one can get very good results for the vapour–liquid interface of a
Lennard-Jones fluid and for a Stockmayer fluid (Lennard-Jones plus dipole interaction). Here
this method of calculation is tested by evaluating the structure and thermodynamic properties
for liquid–liquid interfaces.

In the next section the essential steps of the calculation are explained and the necessary
formulae are collected. For several details we will refer the reader to our previous papers [5,6].
Then the interface between symmetrical Lennard-Jones fluids is analysed (section 3) for which
there are simulations available for comparison. For fluids with different diameters, results are
given in section 4. In section 5 the LJ parametrization of the interaction of argon is tested with
respect to the surface tension. Potential models for cyclohexane (section 6) and for the dipolar
liquids CHF3 and H2O (section 7) are developed for the purpose of making calculations for a
C6H12–water interface in section 8. Section 9 draws some conclusions.

2. The method for calculating the interface properties

The basic ideas of the density functional method for studying inhomogeneous fluids can be
summarized as follows. The free energy of the system is constructed as a functional of
the density distributions of the components and the equilibrium distributions are found by
minimizing this functional. The nontrivial part is the construction of the ‘excess free energy’
Fex which derives from the interactions of the particles forming the fluid. The roughest ‘van
der Waals approximation’ replaces Fex by the average potential energy neglecting all cor-
relations. The exact Fex can be written as a functional integral over correlation functions,
either the total correlation functions hαβ(r1, r2) = gαβ(r1, r2) − 1 (with pair distribution
function gαβ) or the direct correlation functions cαβ(r1, r2). Neither the functions h or c nor
their functional dependence on density distributions are known exactly for given interactions.
Here several steps of approximation have to be taken in order to arrive finally at the thermo-
dynamic properties of the system. We have developed a scheme of approximations which was
shown to be successful for liquid–vapour interfaces [5, 6]. Here the reasoning and some of
the formulae are collected which we later apply to liquid–liquid interfaces. The more detailed
exposition in our previous papers also contains all the necessary references to the many authors
who contributed to the density functional theory of liquids. Here we quote only the review
book edited by D Henderson [9].

The evaluation procedure is based on the calculated direct correlation functions
cαβ(r1, r2; [ρ]). They are defined as second functional derivatives of the excess free energy
Fex :

−β
δ2Fex[ρ]

δρα(1) δρβ(2)
= δcα(1; [ρ])

δρβ(2)
= cαβ(1, 2; [ρ]) (1)

and fulfil two equations, the Ornstein–Zernike equation

hαβ(1, 2) = cαβ(1, 2) +
∑
γ

∫
d3 hαγ (1, 3)ργ (3)cγβ(3, 2) (2)

and

hαβ(1, 2) + 1 = exp

[
− 1

kBT
uαβ(1, 2) +

∑
γ

∫
d3 hαγ (1, 3)ργ (3)

∫ 1

0
dλ cγβ(3, 2; [ρλ])

]
.

(3)

In equation (3) the functional integral over a sequence of density distributions leads from
the densities {ργ (3)} to the structured conditional densities {gαγ (1, 3)ργ (3)} which the particles
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of the different kinds γ show at position 3 when a particle of kind α with the potentials uαγ (1, 3)
sits at position 1. The arguments 1, 2 or 3 may include in addition to the particle position r

internal variables like Euler angles θ, ϕ for dipole directions.
One form of the Euler equation that can be used to determine the density functions across

a fluid boundary which minimize the free energy is the Lovett–Mou–Buff–Wertheim (LMBW)
equation:

∇1 ln ρα(1) = − 1

kBT
∇1�α(1) +

∑
γ

∫
d2 cαγ (1, 2; [ρ])∇2ργ (2). (4)

Here �α is an external potential.
The equations (2), (3) and (4) are exact equations which are obtained from density

functional derivatives of the free energy. They are not really a closed set because equation (3)
for the two-particle correlations actually contains with cγβ(3, 2) near a particle α at position 1
three-particle correlations, for which a third level of equations exists in the hierarchy.

Standard practice closes these equations by using some approximations. We choose the
RHNC approximation due to Lado [10,11]. The HNC approximation replaces the integrals in
equation (3) by those in equation (2) neglecting the functional dependence of cγβ(3, 2) on [ρ].
The RHNC approximation adds a correction Bαβ(1, 2) in the exponent which is designed in
order to get the results for hard-sphere systems exactly when the attractive part of the potential
is switched off:

hαβ(1, 2) + 1 = exp

[
− 1

kBT
uαβ(1, 2) + hαβ(1, 2) − cαβ(1, 2) + Bαβ(1, 2)

]
. (5)

Bαβ(1, 2) is calculated from analytically available correlation functions for mixtures of hard
spheres [12–17]. This RHNC approximation has proven to yield reliable bulk thermodynamic
data, especially when the approximation is optimized by choosing the hard-core radii such that
a measure of the thermodynamic inconsistency

�RHNC = F

V
+ p −

∑
α

ραµα. (6)

is minimized, in many cases made to vanish [5, 6, 18, 19]. When equations (2) and (5) are
solved iteratively for a chosen temperature T and densities ρα , one can evaluate the pressure p

and the chemical potentials µα . The extended formulae are given in [20] and for the reference
hard-core mixture in [13] and [15]. For given T and concentration of one phase, one can
determine the coexisting bulk phases in the case of demixing fluids.

The interface properties are calculated by solving equation (4) across the inhomogeneous
interface region. In order to keep the numerical effort reasonable, we do not calculate the
direct correlation functions in the inhomogeneous densities which are required in equation (4)
directly from equations (2) and (5), but determine cαβ by interpolation between calculated
functions for homogeneous fluids. We use the following steps of interpolation:

cαβ(1, 2; [ρ]) = 1

2

[
cαβ

(|1 − 2|, {ρ̄γ (r1)}
)

+ cαβ

(|1 − 2|, {ρ̄γ (r2)}
)]

. (7)

For a planar interface parallel to the x–y plane we take the weighted densities {ρ̄α(1)} as

ρ̄α(z) =
∫ +∞

−∞
dz′ wα(z, z

′)ρα(z
′). (8)

We choose

ρ̄α(z) = 1

dα

∫ z+sα+dα/2

z+sα−dα/2
dz′ ρα(z

′). (9)
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The weighting function wα(z, z
′) has the form of a box around z with a width dα and a shift

sα of its centre:

wα(z, z
′) =

{
1/dα z + sα − dα/2 � z′ � z + sα + dα/2

0 otherwise.
(10)

We have seen in [5] and [6] that as a result of the asymmetrical weighting due to the shift sα ,
the iteration of the LMBW equation becomes stationary; that is, the position of the interface
does not move at each iteration step. This means that we really have constructed an integro-
differential equation whose solution is the interface density profile.

A second step of interpolation is used to get cαβ

(|1 − 2|, {ρ̄γ }) for densities {ρ̄γ }
in the interface region from correlation functions calculated for homogeneous systems of
compositions which border the compositions encountered in the interface, usually the co-
existing phases and some low densities from the centre of the interface.

The interpolation yields correlation functions also for densities and concentrations in
the interface region for which homogeneous systems would be unstable. The interpolation
scheme has the additional advantage that the process of solving equation (4) iterates only on
the densities and does not require recalculation of correlation functions from equations (2) and
(5). It can be formally summarized as

cαβ(1, 2; [ργ ]) = 1

2

∑
k

[τk(z1) + τk(z2)]cαβ

(|1 − 2|, {ρk
γ }). (11)

The index k runs over all homogeneous phases where the cαβ have been calculated. The inter-
polation coefficients τk(z) depend on the weighted densities {ρ̄γ (z)} and vary during iteration.
More details can be found in [5, 6].

Equations (7), (9), (11) describe an approximate construction of direct correlation
functions in regions of inhomogeneous densities. We have learned [6, 21–23] that approx-
imating the direct correlation functions cαβ(1, 2) leads to safer, more robust and more successful
procedures than approximations of the total correlation functions hαβ(1, 2). In our opinion the
cαβ are simpler functions which change less with the thermodynamic parameters temperature,
density and concentration. Therefore interpolation has a better chance. By this reasoning we
also choose a formula for the surface tension which involves the cαβ , the ‘Triezenberg–Zwanzig
formula’ [6, 24–26]:

βγ = 1

4

∑
αβ

∫
dz1 dω1

∂ρα(z1ω1)

∂z1

∫
dz2 dω2

∂ρβ(z2ω2)

∂z2

×
∫

dR12 R2
12cαβ(R12, z1ω1, z2ω2; {ργ (1)}). (12)

Here also the integration over the Euler angles ω = (θ, ϕ) of the orientation of dipoles
(sections 7, 8) is noted. When this method of calculation was used at liquid–vapour interfaces
and the results compared with simulations, we found that in order to get really good results
one has to observe in addition to the consistency related to equation (6) in the homogeneous
phases another internal consistency requirement: the LMBW equation (4) itself predicts the
coexisting phases as the limits on both sides of the interface from the integration of (d/dz)ργ (z),
the solutions of equation (4). One side can be chosen but the other is a result of the calculation.
Consistency of the entire procedure requires that these coexisting phases agree with those
which had been determined from p and µα for the homogeneous phases. The parameters dα

and sα of the weighting function wα(z, z
′) in equation (10) are varied to adjust this consistency.

Such slight variations of the interpolation of the direct correlation functions can lead to internal
consistency. We always found that taking this additional trouble improved the results markedly.
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The surface tension depends very much on the density differences across the interface. These
are more reliably calculated by the bulk RHNC coexistence calculations.

This concludes the description of the various steps of our method for calculating the
interface structure. We again refer the reader to our previous papers [5, 6] for further details,
explicit formulae and more references, and also for the formulae for angle-dependent potentials,
densities and correlation functions required for dipole interactions as treated in section 7 and
section 8. Then the coordinate 1 = (r1, ω1), where ω1 = (θ1, ϕ1) gives the direction of the
dipole of the particle at r1. The densities and correlation functions in the case of dipolar
interactions are expanded in spherical harmonics. In the previous paper [6] we learned that a
very short expansion yields very good thermodynamic data at coexistence.

3. The liquid–liquid interface of a symmetrical Lennard-Jones mixture

First the interface between two demixing Lennard-Jones liquids A and B is studied. As a test
for the method we investigate a system which has also been studied in MD simulations by
Toxvaerd and Stecki [27–29]. The system is symmetric with respect to A and B. The tendency
for demixing is introduced by reducing the A–B attraction relative to A–A and B–B attraction:

uαβ(1, 2) = 4εαβ

[(
σαβ

r12

)12

− aαβ

(
σαβ

r12

)6
]

(13)

εAA = εBB = εAB = ε

σAA = σBB = σAB = σ

aAA = aBB = 1 aAB = 0.25.

(14)

Also this potential can be represented by only two parameters by setting σ ′ = σa−1/6, ε′ =
εa2. These fluids can therefore be compared to simple Lennard-Jones fluids by corresponding-
states arguments.

When the surface tension is derived from simulations, there is usually a problem with the
long-range tail of the potential. When simulating the structure of the interface and evaluating
the particle distributions, usually the potential is cut off at a certain distance, while for the
surface tension, a ‘long-tail correction’ is added [30, 31]. Then the structure and the surface
free energy are principally calculated with different potentials. Recently a simulation by Mecke
et al [31] has included the long-tail correction also in the determination of the density profiles at
a liquid–vapour interface (see [6]). For the liquid–liquid interface the simulation of Stecki and
Toxvaerd [28] evaluates the surface tension with a cut-off Lennard-Jones potential. We want
to compare our result with this simulation. Therefore the same Lennard-Jones interactions are
used, equations (13), (14), cut off at rc = 2.5σ and shifted upwards by |uαβ(rc)| to avoid a
discontinuity:

ũαβ(r) =
{

uαβ(r) − uαβ(rc) r < rc

0 r � rc.
(15)

The other parameters for the test calculation are chosen from one of the systems simulated by
Stecki and Toxvaerd (reference [28], line 7 of table 1). The temperature is T ∗ = kT /ε = 1,
well below the liquid–gas critical temperature (T ∗

c = 1.31 for the uncurtailed LJ potential [32]).
The surface tension is very sensitive to the density and pressure of the system. We choose
the density such that the calculated pressure is equal to the pressure in the simulated system
p∗ = pσ 3/ε = 2.0417 [28]. The bulk density is then ρ∗ = ρσ 3 = 0.8186. In a simulation the
pressure is a constant throughout the whole simulation box and is therefore a safer parameter
for equality of systems than the bulk density, which is reached only in small parts of the box.
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Now all parameters are fixed, there is nothing left for fitting. The procedures outlined in
section 2 are followed. The symmetry of the system simplifies the search for coexistence. For
total density ρ = ρA + ρB and concentration c = ρB/ρ one gets

p(ρ, c) = p(ρ, 1 − c)

µA(ρ, c) = µB(ρ, 1 − c)

µB(ρ, c) = µA(ρ, 1 − c).

(16)

Therefore the coexisting phases can be found by searching only in one phase for the
concentration c̄ with µA(ρ, c̄) = µB(ρ, c̄). Then the coexisting concentration is c̃ = 1 − c̄.
For temperatures below the demixing critical point a solution c̄ �= 0.5 is found, which has a
lower free energy than the mixture with ρA = ρB and c = 0.5.

In figure 1 the density profiles ρA(z), ρB(z) and the total density ρ(z) = ρA(z)+ρB(z) are
shown. In the interface the total density decreases because there weak A–B bonds are numerous
and the cohesion is reduced. The shaded part represents the (negative) Gibbs adsorption
+ = +A + +B = −0.76σ−2. The Gibbs adsorption is defined as

+ =
∫ +∞

−∞
(ρ(z) − ρbulk) dz = 1

σ 2

∫ +∞

−∞
(ρ∗(z) − ρ∗

bulk) d(z/σ ). (17)

−6.0 −4.0 −2.0 0.0 2.0 4.0 6.0
z/σ

0.0

0.2

0.4

0.6

0.8

ρσ
3

ρA

ρB

ρA+ρB

ΓA+ΓB

Figure 1. The density profiles at the interface between the A-rich and the B-rich phase.
T ∗ = kBT /ε = 1, ρ∗

bulk = 0.8186; the shaded area shows the Gibbs adsorption.

In the symmetric system, + does not depend on the Gibbs dividing surface.
The density oscillations near the interface indicate a layer structure. Also with other non-

local density functionals such oscillations have been found at fluid interfaces [1,2,33] and they
are also demonstrated in the simulations with comparable size and wavelength [27, 28]. The
examples plotted in the publications cited are for a stronger demixing tendency aAB = 0 and
there the oscillations have even larger amplitudes.

The evaluation of the interface tension by formula (12) yields γ ∗ = γ σ 2/ε = 1.78
which agrees with the MD simulation result γ ∗ = 1.71 [28] within 4%, within the accuracy
of the simulation. We learn from this result that the integration of the LMBW equation (4)
with approximations for the direct correlation functions developed in section 2 and optimized
according to the recipes of section 2 is a reliable and robust method for studying fluid interfaces.
Also for liquid–vapour surfaces the method worked successfully [6]. In a previous paper [5]
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we did not curtail the potential. With the larger attraction more cohesion, higher density and
a much larger tension, γ ∗ = 4.66, result. Other authors have found, too, that the ‘long-tail
correction’ to simulation results can double the surface tension [30].

Next the temperature was increased at fixed bulk density ρ∗ = 0.8186. The results are
shown in figures 2–5. The density profiles in figure 2 get broader with a much smaller density
drop in the middle of the interface. The oscillations in the density indicating a layer structure
are only present at low temperatures. The 10%–90% width, the separation of the z-values
between which [ρB(z) − ρB(right)]/[ρB(left) − ρB(right)] varies from 0.1 to 0.9, is shown in
figure 3. It increases at higher temperatures and should go to infinity at the demixing critical
temperature. The absolute value of the Gibbs adsorption (figure 3) decreases with growing
temperature, but rather slowly.

−4.0 −2.0 0.0 2.0 4.0
z/σ

0.2

0.4

0.6

0.8

1.0

ρσ
3

1.0
2.0
3.0
4.0
4.5

T
∗

Figure 2. Temperature dependences of the total-density profiles.

The concentrations in figures 4 demonstrate the broadening of the interface but appear
sharper than the density profiles. An interesting result is the fact that the concentration profiles
do not show the oscillations which are seen in the density. This has also been found in
simulations [27, 28] and in our calculations for the liquid–vapour interface [5].

The surface tension versus temperature at fixed bulk density goes through a maximum in
figure 5. At a liquid–vapour surface it usually decreases monotonically because in equation (12)
the density gradients and c decrease. This behaviour is seen in γgl , the contribution to γ from
interactions between the same kinds of particle, A–A and B–B, in equation (12). In contrast, the
part γf r from A–B interactions is increasing when increasing temperature mixes the particles
near the interface more strongly and therefore increases the total energy of the system because
of the weak A–B attraction. These two opposite trends form the maximum. A recent simulation
result shows the same qualitative behaviour [34].

4. A Lennard-Jones mixture with different particle sizes

Another model studied is a Lennard-Jones mixture with different sizes. The results show
different densities and concentrations in the A-rich and B-rich phases.

The model is defined by Lennard-Jones interactions, equation (13), with the parameters

εAA = 1.0 εBB = 1.0 εAB = 0.5 aαβ = 1.0

σAA = 1.0 σBB = 1.84 σAB = 1
2 (σAA + σBB) = 1.42.

(18)
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1.0 2.0 3.0 4.0 5.0
kBT/ε

0.0

1.0

2.0

3.0

4.0

w
10

%
−9

0%
σ

1.0 2.0 3.0 4.0 5.0
kBT/ε

−0.8

−0.4

0.0

Γ A
(B

)σ
2

Figure 3. Temperature dependences of the 10%–90% width and the Gibbs adsorption.

−4.0 −2.0 0.0 2.0 4.0
z/σ

0.0

0.5

1.0

c B

1.0
2.0
3.0
4.0
4.5

T
∗

Figure 4. Concentrations of particles of type B across the interface.

In figure 6 we plot the densities ρ∗
α = ρασ

3
AA and the packing fractions ξ , the fractions of

particle volume over total volume:

ξα = π

6
ρασ

3
αα. (19)

Both representations show strong layering on the side where the large particles B are in
the majority. The packing fractions in the bulk are fairly equal because the pressure is constant
throughout the system and εAA = εBB, but it drops in the interface where many weak A–B



Structure and surface tension of interfaces between demixing liquids 4777

1.0 2.0 3.0 4.0 5.0
kBT/ε

0.0

1.0

2.0

3.0

γσ
2 /ε

γ
γgl

γfr

Figure 5. The temperature dependence of the surface tension γ at fixed density. γ is separated
into the contribution from identical particles γgl and that from unequal particles γf r .

−4.0 −2.0 0.0 2.0 4.0 6.0
z/σAA

0.0

0.2

0.4

0.6

0.8

ρσ
A

A3

ρA

ρB

ρA+ρB

A B

−4.0 −2.0 0.0 2.0 4.0 6.0
z/σAA

0.0

0.2

0.4

ξ

ξA

ξB

ξA+ξB

Figure 6. Densities and packing fractions ξα = ρασ
3
ααπ/6 across the interface between LJ liquids

of different particle sizes.

interactions play a role. The period of oscillation is close to the diameter of the majority
particles, and also to that of the weak oscillations on the A-rich side. The surface tension in
this system was calculated to be γ ∗ = γ σ 2

AA/εAA = 0.94.
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Lennard-Jones mixtures have also been studied by means of simpler density functionals,
using the mean-field approximation [35,36] or square gradient approximation [37,38], mainly
with respect to wetting of the liquid–vapour interface. At liquid–liquid interfaces no density
oscillations have been found by those methods.

5. The surface tension of argon

In this section different criteria for modelling argon by means of Lennard-Jones potentials are
investigated. That the Lennard-Jones 6–12 potential is a useful ansatz has been proven for low-
density rare gases [39]. Several gas properties can be calculated well with the same potential
parameters—for instance the second virial coefficient, the viscosity and the heat conductivity.
For argon, the fit to the virial coefficient yields

from the virial coefficient: σ = 3.405 Å ε/kB = 119.8 K. (20)

For liquid densities, coexistence and surface properties, it is possible that other parameters
lead to better results. We have found [6] that correct coexistence densities are very important
for yielding good surface tensions. We test in figure 7 how well the coexistence curve of
argon is described by a Lennard-Jones coexistence line and which parameters fit the data best.
We use an interpolation of a simulated coexistence curve for a Lennard-Jones system [32,40]
which is given in reduced units, and rescale it with the parameters from a virial coefficient
fit. In figure 7 the critical temperature comes out too high. From a rescaling of the simulated
curve via a least-squares fit to the experimental data, one gets the following parameters:

from the coexistence data: σ = 3.389 Å ε/kB = 114.5 K. (21)

Ar ( experiment )
Ar ( fit to virial-coef. )
Ar ( fit to coex.data)

Figure 7. The coexistence curve for argon for different LJ potentials.

Next the surface tension is calculated for these two parameter sets along the lines of
section 2: coexistence from RHNC equations (2), (5) and evaluation of p, µ; the surface
structure from LMBW equation (4), with optimized approximations; then evaluation of γ

from equation (12). Figure 8 shows the results. The coexistence fit improves the calculated
values very much. The deviations from the experimental values are less than 10% in the
temperature range studied, while the parameters derived from the virial coefficient lead to
errors of 20% to 40%.
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Ar ( experiment )

LJ ( fit to virial-coef. )
LJ ( fit to coex.data)

T, K

γ,
 d

/c
m

70 110 130 15090
0

5

10

15

20

Figure 8. The surface tension of argon versus temperature.

6. A fit of a Lennard-Jones potential for cyclohexane to surface tension data

Surface and interface properties present more crucial tests for a potential model than bulk
coexistence data. We have studied to what extent a Lennard-Jones potential works for cyclo-
hexane C6H12. Measured coexistence data and surface tension data are taken, the LJ parameters
are fitted to one property, the other is calculated and the deviations are tested. The fit to the
coexistence curve with stress on the critical temperature and on the liquid densities at lower
temperatures yields

from the coexistence data: σ = 5.333 Å ε/kB = 422.1 K. (22)

At Texp = 25 ◦C the coexistence liquid density is ρexp = 0.7739 g cm−3 and the surface
tension is γ = 24.38 dyn cm−1. The Lennard-Jones potential parameters ε and σ lead for
T = 25 ◦C to

ρ(ε, σ ) = ρexp (23)

γ (ε, σ ) = γexp. (24)

The solution can be found from the principle of corresponding states, which relates the thermo-
dynamic properties of all fluids with the same form φ of the potential u(r) = εφ(r/σ ) with
one energy parameter ε and one parameter σ for the length scale [39,41]. The temperature T ,
pressure p, density ρ and surface tension γ have to be expressed in reduced units:

T ∗ = T kB/ε p∗ = pσ 3/ε ρ∗ = ρσ 3 γ ∗ = γ σ 2/ε. (25)

For instance the equation of state f (p∗, T ∗, ρ∗) = 0 is valid for all fluids with the
same potential form [39]. Also the temperature dependence of the surface tension γ ∗(T ∗)
has a universal character [41]. The liquid density ρ∗(T ∗) at coexistence and γ ∗(T ∗) were
calculated for a liquid–vapour surface of a Lennard-Jones system [6]. Therefore we transform
equations (23), (24) as follows:

ρ∗(T̃ ∗) = ρexpσ
3 (26)

1

T̃ ∗ γ
∗(T̃ ∗) = γexpσ

2/(kBTexp) (27)
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with T̃ ∗ = kBTexp/ε. We now consider the left-hand sides as functions of ε, the right-hand
sides as functions of σ , plot both sides parametrically in figure 9 and take ε and σ from the
point where the curves cut each other and equations (26), (27) are fulfilled:

from the surface tension: σ = 5.344 Å ε/kB = 430.3 K. (28)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
ρσ3

0.0

0.5

1.0

1.5

2.0
γσ

2 /k
B
T

C6H12, T=25
o
C

LJ

σ

ε

Figure 9. Determination of σ and ε of the LJ potential for C6H12.

For both parameter sets (22) and (28), we show the coexistence curves in figure 10
(produced by scaling an interpolation of simulated results as in figure 7) and the temperature
dependence of the surface tension γ evaluated via LMBW equation (4) and equation (12)
in figure 11. The deviations are systematic, but not large. When one reduces the critical
temperature by 2%, the surface tension is reduced by 5% to 10%.

LJ ( fit to γ at       )
LJ ( fit to coex.data )

C6 H12

ρ, g/cm3

Τ˚
C

Figure 10. The coexistence curve for C6H12 for different LJ potentials.

In general it can be concluded that the Lennard-Jones parametrization of the cyclohexane
interaction is reliable even as regards interface properties. We expect such parametrization to be
even better for more spherical molecules like CH4, CCl4, CF4. There have been proposals for
Lennard-Jones parametrizations for n-alkanes [42]. With an approximate density functional it
was shown that parameters derived from coexistence data and from the surface tension deviate
more as the chains of the alkanes become longer. With an additional parameter for the potential
range, the situation can be improved [42].
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Figure 11. The surface tension of C6H12 versus temperature.

7. The Stockmayer fluid, a model for dipolar solvents

The Stockmayer fluid, a system with spherical Lennard-Jones interactions and dipoles at the
centres of the particles, is a model for solvents composed of polar molecules. We study here to
what extent this model can approximate properties of trifluoromethane (CHF3) and of water.
CHF3 is a small nearly spherical molecule with a dipole moment of 1.62 D = 5.39×10−30 C m
(D ≡ Debye unit). Water molecules are of similar size and also the dipole moment of
1.82 D = 6.06 × 10−30 C m is close, but the anisotropy of the interaction between water
molecules is much lager than for CHF3 and therefore more difficulties in describing it using a
Stockmayer potential can be expected.

A procedure analogous to that of the previous section is followed and for each fluid a
Lennard-Jones potential as well as a Stockmayer potential are found which reproduce the
experimental liquid density and surface tension at a given temperature:

ρ(ε, σ, µ) = ρexp

γ (ε, σ, µ) = γexp.
(29)

ρexp is the coexistence density of the liquid and γexp is the measured surface tension. We
will determine model parameters from equation (29) and then calculate other properties to
see how adequately the Stockmayer potential models the interactions and to understand the
contribution from the dipole interaction. The dipole moment µ is set equal to that measured
for the gas molecules or to zero for comparison with simple Lennard-Jones potentials. As in
the previous section, corresponding-states arguments are used [39, 41]:

ρ∗(T ∗, µ∗
T

2
) = ρexpσ

3

γ ∗(T ∗, µ∗
T

2)

T ∗ = γexpσ
2

kBTexp

(30)

with µ∗
T

2 = µ2
exp/(kBTexpσ

3). The corresponding-states rules mean for the Stockmayer fluid

that e.g. γ ∗(T ∗, µ∗
T

2) has the same dependence on T ∗ for all values of ε and σ , provided
that µ∗

T
2 has a fixed value. We therefore choose some values, µ∗

T
2 = 1, 1.5, 2, and solve the

equations (30) graphically in figure 12.
For CHF3 the experimental values are ρexp = 1.3098 g cm−3 and γexp = 15 dyn cm−1

at Texp = 199.85 K. The right-hand sides of equations (30) are plotted in figure 12. The
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Figure 12. Determination of σ and ε of the LJ potential for CHF3 and H2O. The points are for the
Stockmayer model: µ∗

T
2 = 1 (•), µ∗

T
2 = 1.5 (×), µ∗

T
2 = 2 (�).

parameter along the line is σ . For water, ρexp = 0.977 g cm−3, γexp = 64.27 dyn cm−1

for Texp = 343.15 K are taken. The integral equation result for the Lennard-Jones fluid is
the continuous line (as in figure 9), where ε and therefore T ∗ are varied. The Stockmayer
potential results for µ∗

T
2 = 1, 1.5 and 2 and for several ε-values are very close to the line for

pure Lennard-Jones potentials. This result means that a certain density of the liquid leads to a
well defined surface tension determined by the Lennard-Jones interaction, no matter what the
dipole strength is. The analysis of the nonspherical contribution to γ in section 8 leads to the
same idea: the dipole interaction may change the density and cohesion, but only in this way
can it influence γ .

Because µ∗
T

2 = µ2/(kBT σ 3) depends on the diameter resulting from the points at which
the lines in figure 12 cross, a quick iteration is necessary for different values of µ∗

T
2 in order to

find µ∗
T which relates to the experimental dipole moment. The resulting parametrizations for

the two systems CHF3 and H2O are given in table 1. Also the pure Lennard-Jones potential
parameters are shown which solve equations (30) with µ = 0.

Table 1. LJ and Stockmayer potential parameters for CHF3 and H2O with the calculated critical
temperatures and the deviations from the experimental values.

µ∗
T

2 ε/kB (K) σ (Å) Tc (K) Tc,exp (K) δTc (%)

CHF3 LJ 0 213.87 3.971 280.8 299.3 6.2
CHF3 Stockmayer 1.54 194.13 3.994 293.4 299.3 2.0
H2O LJ 0 426.6 2.900 560.1 647.1 13.4
H2O Stockmayer 2.09 328.2 2.908 531.7 647.1 17.8

The critical temperature of the model systems can be derived from the simulation result
T ∗
c = TckB/ε = 1.313 (for a pure Lennard-Jones system [32]). Also for Stockmayer models

there is a parametrized summary of several MD simulations by van Leeuwen [43, 44]:

T ∗
c = 1.313 + 0.2999µ∗2 − 0.2837 ln(µ∗2 + 1). (31)

Here µ∗2 = µ2/(εσ 3) = µ∗
T

2kBT /ε. The models underestimate the critical temperature of
CHF3 which is measured as Tc,exp = 299.3 K, but introducing the dipole interaction increases
it and it comes close, within 2%. The cohesion due to the dipoles is not simply added to
the Lennard-Jones interaction, but ε must be taken smaller in order to approach γ and the
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coexistence density at lower temperatures. We conclude that the Stockmayer model is rather
good for CHF3.

For water the outcome is not as successful. Adding the dipole interaction makes the critical
temperature worse. Obviously the Stockmayer model misses some of the essential interactions
in water, the hydrogen bridge bonds, which are responsible for the high experimental
Tc = 647.1 K.

There is another problem with the Stockmayer model for water. µ∗
T

2 = 2.09 in table 1
represents a dipole moment µ = 1.53 D. If µ is increased to 1.82 D and µ∗

T
2 to 2.87 (at

343.15 K) at a water density of ρ∗ = 0.804, the model is unstable with respect to a ferro-
electric phase transition (see e.g. [45]). From a certain dipole strength upwards, the region
where the Stockmayer model shows coexistence is limited to higher temperatures with smaller
liquid densities.

In a paper by van Leeuwen [44], the parameters of the Stockmayer potential for 63 organic
and inorganic fluids have been determined from fits to liquid–gas coexistence data, also for
some molecules containing nitrogen, which have large dipole moments like µ∗2 = µ2/εσ 3 =
4.54 for acrylonitrile or µ∗2 = 8.05 for acetonitrile. If the latter is transformed to units of kT

at room temperature, µ∗
T

2 = 4.8. Such a Stockmayer model at liquid densities is well within
the ferroelectric regime and cannot be used to model acetonitrile. Most of the substances
modelled in [44] are in the moderate regime µ∗2 < 2 and are far enough from the ordering
transition.

8. A polar–nonpolar liquid interface

We have studied in section 6 the Lennard-Jones potential for cyclohexane and in section 7 the
Stockmayer potential fitted to data for water. With these models we now make calculations
for an interface between cyclohexane and water as an example of an interface with a dipolar
component, as found in many technically important systems [39]. The interaction between
cyclohexane and water is assumed to be a Lennard-Jones one with the diameter σ the sum of
the two radii:

σ(C6H12–H2O) = (σ (C6H12) + σ(H2O))/2. (32)

For determining εAB(C6H12–H2O) we take into account the degree of demixing and the
interface tension but we cannot fit the experimental values perfectly with this single parameter.
From [46] (by extrapolation) at 70 ◦C and p = 760 Torr one can derive the solubilities
0.3% H2O in C6H12 and 0.005% C6H12 in H2O with γ = 49.09 dyn cm−1 [47]. On decreasing
εAB in the model interaction, the degree of demixing and the interface tension are increased.

First the water model without a dipole from section 7, table 1, is taken and εAB/kB =
214.2 K chosen, which is just half of the Lorentz–Berthelot suggestion [48] of the geometric
mean value (εAAεBB)

1/2. With these model parameters there is still 6.6% water in C6H12 while
the large C6H12 molecules have withdrawn from the water to leave a residual concentration of
0.000 04% (concentration c1 = ρ1/(ρ1 + ρ2)). Like in figure 13 for the Stockmayer potential,
strong oscillations are also found here, i.e. layering on the side of the large C6H12 molecules.
The interface tension is γ = 66 dyn cm−1, larger than measured. The approximation scheme
for the direct correlation functions and its optimization (section 2) could not be carried out to
complete consistency. The LMBW equation (4) led to a density of C6H12 5% larger than the
RHNC coexistence calculation. This higher density is one reason for the larger surface tension.

Secondly the Stockmayer model for water from section 7 is used with the same H2O–
C6H12 interaction (table 2). On introducing the water dipoles, the H2O content in C6H12 is
slightly reduced to 5.7% and the C6H12 content in water becomes a bit larger, 0.000 056%. The
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Figure 13. Densities and dipole orientation at the water–cyclohexane interface. T = 70 ◦C; the
Stockmayer–LJ model.

Table 2. Potential parameters for a water–cyclohexane mixture with the LJ and the Stockmayer
models for water.

Components µ∗
T

2 ε/kB (K) σ (Å)

H2O (LJ) 0 426.6 2.900
H2O (Stockmayer) 2.09 328.2 2.908
C6H12 0 430.3 5.344
C6H12–H2O 0 214.2 4.122

move is in the right direction but too small. In figure 13 the density profiles are shown with
even more pronounced layers on the cyclohexane side than without dipoles. Also the gradient
on the water side is steeper. The result is a larger surface tension: γ = 77 dyn cm−1, 18%
above the measured value. In the lower panel of figure 13 the information about the dipole
orientation is given. The angle-dependent density is expanded:

ρ(z,4) = ρ(z)
∑
5

α5(z)P5(cos 4). (33)

As for the liquid–gas surface in [6], at the liquid–liquid interface the dipoles are found normal
to the surface (positive values of α2) on the side of low dipole density and parallel to the surface
plane on the high-density side.

We discussed in [6] why the different extremal values of α2 mean essentially the same
degree of orientation. For perfect normal orientation α2 = 5/2, so with the calculated maximal
value of α2,max = 0.57 we can speak of a degree of normal orientation α2,max/(5/2) = 0.228,
while perfect parallel orientation yields α2 = −5/4 and the calculated degree of parallel
orientation α2,min/(−5/4) = 0.256 on the side of high dipole density. As at the liquid–vapour
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surface, we understand the dipole orientation from image force considerations: the low-density
dipoles are in front of a medium of large polarizability with image charges of opposite sign.
Then the normal orientation is the low-energy position. The dipoles on the high-density side
are in a highly polarizable system in front of a half-space of low dielectric constant. This leads
to image charges of the same sign where the parallel position has lower energy. The degree
of orientation at the liquid–liquid interface is much larger than at a liquid–vapour surface of a
Stockmayer fluid (see [6]).

We can compare only to simulations, which use much more complicated potentials: a
water/benzene interface was investigated in Monte Carlo simulations by Linse [49] while
molecular dynamics was used for water/octane by Zhang et al [50] and for water/ethylene
chloride by Benjamin [51–53]. We did not find simulations of a Stockmayer–Lennard-Jones
interface. Model dipoles were represented by opposite charges on two-centre Lennard-Jones
molecules like CO [54, 55]. The mean-field density functional calculations concentrated on
the liquid–vapour interface of polar–nonpolar mixtures [4, 56, 57]. All simulations found
essentially the same orientation. If the resolution is not sophisticated enough, the simulations
see only the parallel orientation of the many dipoles on the high-density side and not the normal
orientation of the few.

Because dipole forces contribute to the average cohesion one may ask whether the
dipole forces alone can lead to demixing. We have therefore studied the system with
εAB = [ε(H2O)ε(C6H12)]1/2 according to the Lorentz–Berthelot suggestion. Here the
Lennard-Jones potentials do not lead to demixing, but also the addition of dipole forces of
strength µ∗2 = 2.09 did not lead to separated phases. Previously a separation of hard spheres
from hard spheres with dipoles was predicted for µ∗

T
2 = µ2/σ 3kT = 2.5 and ρ∗ > 0.6 [58].

For Stockmayer models, simulations by de Leeuw et al [59, 60] showed a dipole-driven
demixing for large µ∗2 = µ2/σ 3ε > 3.15 at T ∗ = T kB/ε = 1.15 and ρ∗ = ρσ 3 = 0.822.

In the system studied here the demixing is caused by an A–B isotropic Lennard-Jones
interaction that is weak compared to the A–A and B–B LJ interaction. The H2O–H2O attraction
is very close to that within C6H12. Therefore the strong asymmetry of the concentrations in
the coexisting phases is due to the different sizes of the particles. The small water molecules
dissolve better within the phase of large cyclohexane molecules than vice versa. The dipolar
interactions contribute very little to this picture.

9. Conclusions

Interfaces between demixing liquids were investigated by density functional methods
employing calculated correlation functions. In a previous paper [6] we developed this scheme
of calculation, especially a certain sequence of approximations. Parameters in these approx-
imations were optimized by the requirement of internal thermodynamic consistency. Then it
was shown how well the procedure worked at liquid–vapour interfaces. Here the method is
tested at interfaces between two liquids.

An exact comparison with an MD simulation is possible for a symmetrical Lennard-Jones
mixture (section 3). The potentials are curtailed in the same way as in the simulations. The
calculated surface tension agrees with the evaluation from the simulation within the accuracy
of the simulation. This result proves the reliability of the method also in the case of a liquid–
liquid interface. As a second example a LJ mixture with very different sizes of the particles
was chosen (section 4). Strong density oscillations, i.e. a layering, on the side of the larger
particles are the prominent result.

Next for the case of argon we tested whether the LJ parametrization of the interaction
yields good results also at the surface (section 5). The surface tension comes out closer than
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10% to the measured result when the LJ parameters are determined from coexistence data,
while the standard fit to the virial coefficient is less satisfactory. That coexistence data and
the surface tension correspond well is also found for cyclohexane in section 6. In section 7
we studied fluids with dipole interactions. At the liquid–vapour surface the dipole interaction
contributes to the cohesion and therefore increases the liquid density, but for the given density
the evaluation of the surface tension shows very little contribution from the dipole forces. For
a molecule which is nearly spherical with a dipole, like CHF3, the Stockmayer potential can
be parametrized to yield the coexistence data and the surface tension well, while for H2O
the critical temperature comes out too low by about 15% when the surface tension at lower
temperatures is used for the parameter fit.

Finally the interface calculation was evaluated for an interface between a polar and a
nonpolar liquid (section 8). The orientation of the dipoles at this interface is qualitatively
the same as at the liquid–vapour surface, but the degree of order is much higher. The results
demonstrate that the method for investigating fluid interfaces works under several very different
conditions, that the approximations are robust and that the results are excellent when they can
be compared to simulations which use the same potentials.
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